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Abstract

The weights of optimal compression structures of several types are estimated[ Minimum weights of
columns having solid square or circular cross!sections are compared with those of similar metalÐfoam!_lled
tubes\ hollow tubes and tubes whose walls are foam!core sandwiches[ Similarly\ the minimum "of near!
minimum# weights of wide sandwich compression panels are studied along with those of hat!sti}ened\ solid!
skin panels and panels in which the skins and sti}eners are themselves metalÐfoam!core sandwiches[ In these
studies\ weight comparisons are made on the basis of appropriate structural indices and compressive strength
is the only failure criterion[ These studies provide baseline comparisons that ignore other possible design
constraints\ such as longitudinal sti}ness\ minimum gage and cost[ Þ 0888 Published by Elsevier Science
Ltd[ All rights reserved[

0[ Introduction

For many years\ light!core sandwich construction has been considered as an alternative to
conventional thin!gage compression structures\ such as skin!stringer panels[ Recent advances in
the processing of metallic foams having porosities as high as 9[84 has aroused interest in their
potential use as structural sandwich cores[ Accordingly\ the purpose of the present paper is to make
some elementary baseline e.ciency studies that explore how well metalÐfoam!core compression
structures might compete purely on the basis of the minimum structural weight needed to carry
prescribed loads over given distances[ Compressive strength is the only design constraint imposed
in the present studies and the approach used exploits classical concepts of structural index and
minimum!weight design that were established\ applied and extended by Wagner "0818#\ Zahorski
"0833#\ Schuette "0834#\ Farrar "0838#\ Shanley "0841#\ Gerard "0845# and more recently and
extensively\ by Weaver and Ashby "0886#[ Factors other than strength that might be pertinent to
the design process\ such as cost\ longitudinal sti}ness\ or minimum gage\ are not considered here[

Several kinds of con_gurations have been selected for comparative minimum!weight analysis[

� E!mail ] budianskyÝhusm[harvard[edu
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Fig[ 0[ Column load and length^ stressÐstrain relation[

Columns having solid square or circular cross!sections are compared with similar foam!_lled tubes\
with hollow tubes and tubes whose walls are foam!core sandwiches[ Similarly\ the weights of
optimized "or near!optimum# skin!stringer panels are studied together with those of minimum!
weight sandwich panels and those of skin!stringer panels in which skins and sti}eners are themselves
metalÐfoam!core sandwiches[ In each optimization study\ the porosity of the metal foam is held
_xed "that is\ optimization with respect to porosity is not executed# and the various general
conclusions drawn are limited to porosities around 89Ð84)[

The present study is not\ of course\ a substitute for the elaborate computation!intensive industrial
procedures for structural analysis\ design and optimization that have come into use in recent
decades[ In all of the present calculations\ geometries are idealized " for example\ details of riveted
attachments are ignored# and various approximations are introduced that facilitate the analyses
without doing violence to the broad general conclusions reached[

1[ Columns

1[0[ Ideal plasticity

Much of the analysis here elaborates on the work of Gerard "0845#[ With the strength P and
length L of a simply!supported column prescribed "Fig[ 0#\ the minimum weights of untapered
columns of various types\ with and without the incorporation of lightweight foam material\ will
be calculated and compared[ The base material has Young|s modulus E and weight density r and
is elasticÐideally plastic\ with compressive stress s and strain o related by s � Eo for s less than
the yield stress sY and s � sY for o × oY � sY:E[

1[1[ Homo`eneous columns^ structural index^ stress bounds

In a homogeneous column "i[e[\ no foam# having any cross!sectional shape\ the axial stress s

produced by the design load P must satisfy the inequality

s ¾ s0 0
p1EI

AL1
"0#
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where A is the cross!sectional area\ I is its minimum moment of inertia and s0 is the Euler column
buckling stress[ This is the same as

s ¾
p1bEA

L1
"1#

where b is the non!dimensional shape factor b � I:A1[ Substituting A � P:s gives

s ¾ pzEbX
P

L1
"2#

in terms of the structural index P:L1 "Wagner\ 0818#\ which captures the prescribed design variables
P and L[ But s can also not exceed the yield stress sY and so\ in the minimum!weight analyses that
follow\ the stress bounds

s

E
¾

p1I

AL1
0

s0

E
"3a#

or

s

E
¾ pzb 0

P

EL11
0:1

"3b#

and

s

E
¾ oY "4#

must be satis_ed for each prescribed value of the nondimensional structural index P:"EL1#[ The
weight of the column is W � rAL and again using A � P:s gives the equation

W

rL2
�

P

EL1

s:E
"5#

for the non!dimensional weight W:"rL2#[ Thus\ in a homogeneous column\ maximising the stress
minimizes the weight[ If local buckling is an issue\ stress constraints in addition to "3#\ "4# generally
have to be imposed[

1[2[ Compact\ homo`eneous cross!sections] circles and squares

For a solid circular cross!section\ b �"3p#−0 and minimum weight is obtained by substituting
into eqn "5# the largest allowable stress permitted by one or the other of the constraints "3b# and
"4#[ This gives "Gerard\ 0845#

Wmin

rL2
�

1

zp 0
P

EL11
0:1

for
P

EL1
¾

3o1
Y

p
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Fig[ 1[ Minimum column weights for solid circular and square cross!sections\ oY � 9[996[

�
P

oYEL1
for

P

EL1
−

3o1
Y

p
[ "6#

A similar calculation for a column having a solid square cross!section\ with b � 0:01\ gives

Wmin

rL2
�

1z2
p 0

P

EL11
0:1

for
P

EL1
¾

01o1
Y

p1

�
P

oYEL1
for

P

EL1
−

01o1
Y

p1
[ "7#

These results are plotted in Fig[ 1 for the choice oY � 9[996[ The square is slightly more e.cient
than the circle\ up to the value of the structural index at which they both fail at the {squash| load
sYA[ Note that for all cross!sections\ Wmin:"rL2# � P:"oYEL1# provides a universal lower bound
on the weight and so represents the highest conceivable structural e.ciency at any value of the
structural index[

1[3[ Foam!core columns

Consider next a foam!_lled column having the square cross!section show in Fig[ 2\ with the
weight density of the foam core equal to rc ³ r[ The following simplifying assumptions will be
made in the minimum weight analysis that follows]

Fig[ 2[ Foam!core tubes[ Square] t �"b0−b1#:1\ b �"b0¦b1#:1^ circle] R � mean radius[
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, the core stabilizes the tube walls against local buckling^
, the contribution of the core to the column bending sti}ness is neglected^
, the contribution of the compressive stress in the core to the total applied load is neglected^
, reduction of the column buckling strength due to transverse shear compliance is neglected[

Accordingly\ with A � b1
0−b1

1\ I �"b3
0−b3

1#:01 and s � P:A\ the constraint eqns "3#\ "4# con!
tinue to apply\ with

s0

E
�

p1

01 0
b1

0¦b1
1

L1 1[ "8#

The total weight W � rAL¦rcb
1
1L is W �"r−rc:1#AL¦rc"b1

0¦b1
1#L:1 and using A � P:s as

well as eqn "8# leads to the non!dimensional weight equation

W

rL2
�
00−

rc

1r1
P

EL1

s:E
¦

5

p1

rc

r

s0

E
[ "09#

For minimum weight\ we want the lowest possible s0 consistent with the constraint "3a#^ this
implies that s0 should be set equal to s in "09#\ as long as the constraint "4# is not violated[ Then
minimization of "09# with respect to s:E leads to

s0

E
�

s

E
� pX 0

r

5rc1 00−
rc

1r1 0
P

EL11 "00#

and

Wmin

rL2
�

1
pX 0

5rc

r 1 00−
rc

1r1 0
P

EL11 "01#

for P:"EL1# ¾ ðP:"EL1#ŁY\ where

0
P

EL11Y

�
5

p1

rc

r 00−
rc

1r1
−0

o1
Y "02#

is the critical value of the structural index for which the stress s in "00# becomes equal to sY[ For
higher values of P:"EL1#\ minimum weight is associated with the attainment of both of the upper
bounds on s in eqns "3a# and "4# and so we can set s0:E � s:E � oY in "09# to get

Wmin

rL2
�
00−

rc

1r1
P

EL1

oY

¦
5

p1

rc

r
oY "03#

in the range ðP:"EL1#ŁY ¾ P:"EL1# ¾ ðP:"EL1#ŁS[ Here
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Fig[ 3[ Minimum weights of solid and foam!core columns\ oY � 9[996\ rc:r � 9[0[ The arrow indicates ðP:"EL1#ŁY and
the curves meet at ðP:"EL1#ŁS^ see eqns "02#\ "04#[

0
P

EL11S

�
01o1

Y

p1
"04#

is the same breakpoint discovered in eqn "7# for the transition to squashing failure of the optimum
column of solid square cross!section[ This means that for all higher values of P:"EL1#\ the foam!
core column is solid\ the optimum amount of foam having become zero^ the buckling constraint
becomes irrelevant\ the optimum column fails at its squash load and we have Wmin:"rL2# � P!
:"oYEL1#[ These results for minimum weight are plotted in Fig[ 3\ for rc:r � 9[0 and oY � 9[996\
together with those for the solid square[ Clearly\ over a substantial range of structural index\ the
optimum foam!core column weighs considerably less that the solid column*not a surprise[

For P:"EL1# ¾ ðP:"EL1#Ł the optimum dimensions of the foam!core column are determined by
the relations "8# and

s

E
�

P
AE

�
P:"EL1#

"b1
0−b1

1#:L1
[ "05#

Solving for b0 and b1 gives

b0\1

L
�

0

z1 6
01

p1

s0

E
2

P:"EL1#
s:E 7

0:1

[ "06#

Sample plots are shown in Fig[ 4[ Here\ for P:"EL1# ¾ ðP:"EL1#ŁY\ the result "00# for s:E � s0:E
is used in eqn "06#\ while for ðP:"EL1#ŁY ¾ P:"EL1# ¾ ðP:"EL1#ŁS\ s:E � s0:E � oY[ For P:"EL1#
− ðP:"EL1#ŁS\ we have s:E � oY and b1 � 9 and then eqn "05# gives b0:L � ðP:"oYEL1#Ł0:1[

In the elastic design range\ for P:"EL1# ¾ ðP:"EL1#ŁY\ the optimum ratio of core weight to skin
weight is exactly

Wc

Ws

� 0−
rc

r
"07#

and in this initial range the ratio t:b "see Fig[ 2# is very nearly constant at
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Fig[ 4[ Optimum dimension ratios of foam!core column\ oY � 9[996\ rc:r � 9[0^ Fig[ 2[

t
b

�
rc

3r 00−
rc

1r1
−0

[ "08#

A very similar analysis for a foam!core circular!cylinder column gives the following results for
minimum weight]

Wmin

rL2
� 1X 0

1rc

pr1 00−
rc

1r1 0
P

EL11 for
P

EL1
¾

1rc

pr 00−
rc

1r1
−0

o1
Y

� 00−
rc

1r1
P

oYEL1
¦

1rc

pr
oY for

1rc

pr 00−
rc

1r1
−0

o1
Y ¾

P

EL1
¾

3o1
Y

p

�
P

oYEL1
for

P

EL1
−

3o1
Y

p
[ "19#

The relation "07# for Wc:Ws also holds here in the initial\ elastic range\ wherein t:R "see Fig[ 2[#
remains very close to

t
R

�
rc

1r 00−
rc

1r1
−0

[ "10#

The optimum weights "19# for the foam!_lled circular cylinder are just a few percent higher than
those for the foam!_lled square tube\ until they become equal to each other when both optimum
columns have become solid and fail by squashing\ for P:"EL1# × 3o1

Y:p[

1[4[ Hollow square tubes^ naive optimization^ mode interaction

The optimization analysis by Gerard "0845# of a hollow square tube "Fig[ 2\ with the foam core
removed# will now be recapitulated[ Recall ðeqn "5#Ł that for minimum weight\ the allowable stress
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Fig[ 5[ Optimum stress for given structural index P:"EL1#^ s0 � Euler buckling constraint\ s1 � local plate buckling
constraint[

should be maximized at the optimum design[ For t:b small\ b ¼"0:13#"b:t# in the Euler buckling
constraint "3b# and so

s

E
¾

p

z13 0
P

EL11
0:1

X
b
t
0

s0

E
[ "11#

For a prescribed value of the structural index\ the upper bound s0 on s is an increasing function
of b:t "Fig[ 5#[ But the stress s must also satisfy the constraint

s ¾ s1 0
3p1D

b1t
"12#

where s1 is the local plate buckling stress and

D �
Et2

01"0−n1#
"13#

is the plate bending sti}ness[ "Here we assume a pattern of simply!supported square buckles
around and along the tube\ which is a good approximation for L Ł b[# Hence

s

E
¾

p1

2"0−n1# 0
t
b1

1

�
s1

E
"14#

and here s1 is a decreasing function of b:t[ Accordingly\ in the absence of plastic yielding\ the
optimum choice of b:t\ namely\ the one that maximizes s under the simultaneous constraints "11#
and "14#\ makes s0 � s1 � sopt "Fig[ 5#[ This condition implies

sopt

E
�"0−n1#−0:4 0

p1

011
2:4

0
P

EL11
1:4

"15#

"Gerard\ 0845# and the corresponding minimum weight Wmin that follows from eqn "5# satis_es

Wmin

rL2
�"0−n1#0:4 0

01

p11
2:4

0
P

EL11
2:4

[ "16#

From "14#\ the optimum value of t:b is
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Fig[ 6[ Minimum weights of solid\ foam!core and hollow square cross!section columns^ oY � 9[996\ n � 0:2[

t
b

�
z2"0−n1#

p X
sopt

E
"17#

and with I:A ¼ b1:5\ eqn "3a# gives

b
L

�
z5
p X

sopt

E
[ "18#

The results in eqns "15#Ð"18# do not\ of course\ apply if the value of sopt:E given by eqn "15#
exceeds the yield condition "4#[ This will happen for

P

EL1
×"0−n1#0:1 0

01

p11
2:1

o4:1
Y "29#

and then the familiar result "Wmin:rL2# �"P:EL1oY# corresponding to squashing failure holds[
For oY � 9[996\ the hollow!tube minimum weight is compared in Fig[ 6 with the optimum

weights of solid and foam!core columns[ The optimized hollow tube evidently weighs less than the
best tubes _lled with 89)!porosity metal foam[ It is noteworthy that for the hollow tube\ the result
for minimum weight ðeqn "16#Ł in the elastic range varies like the 2:4th power of the structural
index\ while for foam!_lled columns the weight given by eqn "07# is proportional to the square
root of the index[ This means that if plasticity did not occur the foam!_lled tube would eventually
become more e.cient at a su.ciently high value of the structural index[ However\ for practical
values of oY\ plasticity does intervene and the hollow tube stays lighter[ The weight margin is\ of
course\ reduced for lower foam!core density[

The optimum dimension ratios "17#\ "18# for the hollow tube are exhibited in Fig[ 7\ up to the
squashing transition value "29# of the structural index[ In the plastic design range\ for which
P � 3btsY\ the constraint

3 0
t
b1 0

b
L1

1

oY �
P

EL1
"20#

must apply[ Also\ to ensure that elastic buckling does not occur\ the inequalities
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Fig[ 7[ Optimum dimension ratios "Fig[ 2# for hollow square!tube column^ oY � 9[996\ n � 0:2[

t
b

−
z2"0−n1#oY

p
\

b
L

−
z5oY

p
"21#

implied by eqns "14#\ "3a# must hold[ But the relations "20#\ "21# do not determine unique optimum
values for t:b and b:L^ minimum weights are obtained for a range of designs in the plastic range[

The optimum design procedure used in the elastic range\ in which two independent modes of
failure were forced to occur simultaneously\ has been called {naive optimization| "Maquoi and
Massonet\ 0865#[ Why {naive|< The simple!minded concept is that if there is a residual margin of
safety with respect to secondary failure mode when primary failure occurs\ the structure has been
over!designed[0 But even when this approach appears to be rigorous\ as in the derivation just
shown\ the failure modes may not really be independent in the presence of small geometrical
imperfections and they may be susceptible to a strong non!liner interaction[ On this basis\ many
warnings have been issued against naive optimization "e[g[\ Koiter and Skaloud\ 0851^ Thompson
and Lewis\ 0861^ Tvergaard\ 0862#^ optimizing con_gurations may not be correctly predicted and
more seriously\ strength may be degraded because of multi!mode imperfection!sensitivity in the
vicinity of optimum con_gurations[ These mode!interaction issues are encapsulated in the sche!
matic diagrams shown in Fig[ 8[ Here the thick lines in the _rst two sketches illustrate elastic
buckling and initial postbuckling loadÐdisplacement relations for imperfection!free columns and
plates[ In naive optimization of the perfect hollow\ square!tube column\ these buckling loads Pc

coincide and the last drawing shows the load de~ection behavior when the two buckling modes
interact non!linearly[ Although the uncoupled buckling behaviors are stable\ the combined
behavior displays a falling post!buckling load[ In the presence of initial geometrical imperfections\
the uncoupled and coupled load!de~ection behaviors are illustrated by the thin lines and the salient
point to be made is that mode interaction leads to an actual buckling strength that is reached at

0 This is the principle of the poem {{The Deacon|s Masterpiece ^ or The Wonderful {One!Hoss Shay| || by Oliver
Wendell Holmes\ in which every part of the parson|s horse!drawn chaise was just as strong as every other part ^ so that
when it _nally failed after a century of use\ {{it went to pieces all at once [ [ [ and nothing _rst||[ The poem concludes ]
{{Logic is logic[ That|s all I say[||
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Fig[ 8[ Nonlinear interaction of column and plate buckling modes[

Fig[ 09[ Actual and naive design optima[

the limit point lPc\ where l ³ 0 is a knockdown factor that depends on the sizes and shapes of the
imperfections[ This phenomenology was exposed in the classic work by Koiter "0834# and in the
many later warnings against naive optimization[ The mode interaction might be accentuated in
structures for which one or more of the individual buckling modes are themselves unstable[

An additional consequence of mode interaction is suggested in Fig[ 09\ which reproduces the
diagram of Fig[ 5 showing the naive!optimum dimension ratio b:t\ together with the optimum
design point on the thin line for the actual relation between the strength and b:t[ Although there
can be exceptions "e[g[\ Thompson and Lewis\ 0861# the smooth maximum on this relation is
generally not far from the b:t dictated by naive optimization[ Studies by Koiter and his co!workers
"e[g[\ Koiter and Pignataro\ 0865# suggest that the earlier warnings were generally too severe and
that a value of l ¼ 9[8 should often be conservative in mode!interaction situations[ But l could
sometimes be smaller^ de_nitive\ generalized conclusions are hard to glean from the literature[

So\ to take mode!interaction into account approximately in an optimization calculation when a
load P is speci_ed\ a plausible approach is to execute naive optimization for an ampli_ed magnitude
P:l for the speci_ed load[ If l really is the knockdown factor\ the resulting structure would have
the right strength and be close to optimum[ Thus\ the minimum!weight results for the hollow tube
in Fig[ 6 can be reinterpreted by de_ning the abscissa to be P:"lEL1#[ The results found for
optimum dimension ratios may similarly be rede_ned to be functions of P:"lEL1#[ Since there is
no mode interaction in the solid or foam!_lled tubes\ we would keep l � 0 for these cases[ If we
choose l � 9[8 for the hollow tube\ Fig[ 6 still indicates that it has the lowest weight for a given
value of P:"EL1#[ Whether we should continue to use this modest knockdown factor in the
squashing range of the hollow tube is problematic^ it might be somewhat lower in the vicinity of
P:"EL1#×095 � 4[ Even there\ for rc:r � 9[0 and l as low as 9[4\ the foam!_lled square tube would
still not be preferable the hollow tube on the basis of weight[
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1[5[ Hollow circular tubes

Gerard "0845# also studied the optimum hollow circular cylinder\ for which some new issues
arise^ his treatment is revised slightly here[ For small t:R "Fig[ 2# the column buckling stress is

s0 �
p1E
1 0

R
L1

1

[ "22#

The local shell buckling stress will be written as

s1 � g
E

z2"0−n1#

t
R

"23#

where g is a knockdown factor that multiplies the classical critical stress for a perfect cylinder[ The
local buckling of a circular cylinder is notoriously imperfection!sensitive and g takes this into
account before any additional knockdown is introduced by coupling with the column buckling
mode[ The empirical choice made here for g as a function of t:R is that suggested by NASA
"Anon[\ 0854#\ namely

g � 0−9[890"0−e−f# "24#

where

f �
0
05X

R
t
[ "25#

This dependence of g on t:R is based on a lower bound to reams of critical!stress data on cylindrical
shell buckling[ Setting s0 � s1 � s in accordance with the naive optimization criterion and using

P

EL1
� 1p 0

R
L1

1

0
t
R1

s

E
"26#

together with eqns "22#\ "23# and eqn "5# permits the explicit evaluation of s:E\ R:L\ P:"EL1# and
_nally Wmin:"rL2# in terms of t:R[ Squash!load design takes over ðeqn "4#Ł for

gt:R − oYz2"0−n1#[ "27#

"For oY � 9[996 and n � 0:2\ this starts at "t:R#S ¼ 9[9062\ where g � 9[548[# The _nal step is to
introduce the mode!interaction factor l and plot results against P:"lEL1# instead of P:"EL1#[ This
is done in Fig[ 00\ where the hollow circular tube weights are compared with those for the foam!
core and hollow squares[ "Assign l � 0 for the foam!core column weight\ whereas l ³ 0 for the
other two curves[# The optimum hollow circle squashes at P:"lEL1#S � 0[97×09−5 and provides
the lowest weight up to the squash transition value P:"lEL1#S � 4[07×09−5 for the hollow square[
In this assessment\ it is presumed that l is about the same\ say 9[8\ for the hollow square and
hollow circle\ although information for the latter is lacking[ Plots showing the optimum dimension
ratios t:R and R:L\ omitted here\ may be easily generated^ as for the hollow square tube\ optimum
proportions are not unique in the squashing domain[
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Fig[ 00[ Comparison of minimum weights for hollow circular cylinder\ foam!core square and hollow square^ oY � 9[996\
n � 0:2[

1[6[ Hollow square tubes with sandwich walls

Consider next a hollow!core column of square cross!section\ the walls of which are themselves
sandwiches "Fig[ 01#[ Each sandwich face sheet has thickness t^ the face!sheet spacing\ measured
between sheet midplanes\ is d − t^ the centerline width of the square is b[ The column buckling
stress s0 remains well approximated by eqn "3a# with I:A ¼ b1:5[ The plate bending sti}ness of the
sandwich walls is

D �
E

0−n1 0
td1

1 1 $0¦
0
2 0

t
d1

1

% "28#

and so the local plate buckling stress is

s1 �
3p1D

1b1t
�

p1E

0−n1 0
d
b1

1

$0¦
0
2 0

t
d1

1

%[ "39#

Invoking the naive optimization condition s0 � s1 � s provides the connections

s

E
�

p1

5 0
b
L1

1

�
p1

0−n1 0
d
b1

1

$0¦
0
2 0

t
d1

1

% "30#

for optimum design in the elastic range[ The weight of the column is

Fig[ 01[ Cross!section of hollow\ square!tube column with sandwich walls[
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W � ð7rbt¦3rcb"d−t#ŁL "31#

and we can use the exact relation

P � 7sbt "32#

to eliminate t and get

W

rL2
�
00−

0
1

rc

r 1
P

EL1

s:E
¦

3rc

r 0
b
L1

1 d
b

[ "33#

Now eliminate b:L and d:b in favor of s via eqns "30#\ dropping for the nonce the term 0
2
"t:d#1\

which will turn out to be entirely negligible in the elastic design range[ This gives

W

rL2
�
00−

0
1

rc

r 1
P

EL1

s:E
¦

13z"0−n1#

p2

rc

r
"s:E#2:1 "34#

which\ _nally\ may be minimized analytically with respect to s:E to get Wmin[ The results are

sopt

E
� ð0−n1Ł−0:4 $

p2:25
rc:r 00−

0
1

rc

r 1%
1:4

$
P

EL1%
1:4

"35#

and

W

rL2
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[ "36#

From "30#\ the corresponding optimum values of b:L and d:b are

b
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p X

sopt

E
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d
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�
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pX
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E
"37#

with the t:d contribution to d:b still neglected[ But t:d can be estimated by using eqns "35# and
"37# in the relation
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obtained from "32# and this gives simply

t
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3 0

rc

r 1 00−
0
1

rc

r 1
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"49#

for all values of the structural index in the elastic design range[ Note that for rc:r � 9[0\ t:d ¼ 9[968\
which justi_es neglecting 0

2
"t:d#1 relative to unity in eqn "30#[

This simpli_cation will no longer be made in the calculation that follows for values of the
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structural index higher than the critical value ðP:"EL1#ŁY for which sopt becomes equal to sY[ From
eqn "35# we have
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1
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o4:1
Y "40#

and for all larger values of the structural index we can set s � sY in eqn "33# and write
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[ "41#

To minimize W and also avoid column buckling\ the optimum choice in "37# for b:L\ with
sopt:E � oY is dictated\ giving
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Similarly\ the best choice for d:b\ following "3#\ should satisfy

0
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p1 1 oY−
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2 0
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"43#

and using "38# and "37# to eliminate t:b gives

d
b

�X
0−n1

p1
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0
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[ "44#

With this optimum value of d:b\ eqn "42# provides Wmin and its use in "38# also gives the optimum
dimension ratio

t
d

�

p1P

37EL1

o1
Y"d:b#

[ "45#

These results are only valid up to the limiting value of the structural index that gives t:d � 0\
for which there is no longer any _ller in the sandwich walls[ This limiting value is precisely that
given earlier in eqn "29# for the transition to plasticity of the solid!wall hollow!core column^ for
higher values of the structural index\ the squashing optimum weight is attained[

With the usual substitution of P:l for P\ the minimum!weight results for the sandwich!wall
square!tube column are shown in Fig[ 02\ together with the curves of Fig[ 00[ The sandwich!wall
square is more e.cient than the hollow square\ at least up to ðP:"lEL1#ŁS � 4[07×09−5\ where
optimum sizing demands that no sandwich _ller at all be used and it coincides with the squashing
solid!wall hollow tube[ But for lower values of the structural index\ the hollow circle still weighs
less[ The optimizing dimension ratios of the sandwich!wall square tube "see Fig[ 01# are shown in
Fig[ 03[ Yield starts at ðP:"lEL1#ŁY � 9[36×09−5\ but foam is still present up to ðP:"lEL1#ŁS\ where
t:d � 0[ Then the foam disappears and as for the hollow\ solid!wall tube\ the values of b:L and d:b
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Fig[ 02[ Minimum column weights] foam!core square\ hollow square\ sandwich!wall square\ hollow circle^ oY � 9[996\
n � 0:2[

Fig[ 03[ Optimizing dimension ratios "Fig[ 01# for sandwich!wall square tube^ rc:r � 9[90\ oY � 9[996\ n � 0:2[

become indeterminate\ subject only to the previously discussed constraints "20#\ "21#\ with t
replaced by 1d[

A passing remark] in the initial elastic range of structural index below ðP:"lEL1#ŁY\ the ratio of
core weight to sheet weight is close to

Wc

Ws

�
1
2 00−

4
3

rc

r 1[ "46#

1[7[ Hollow sandwich!wall circular cylinders

To round out the column e.ciency studies\ the sandwich!wall\ hollow circular cylinder illustrated
in Fig[ 04 will be analyzed\ although it has to be noted from Fig[ 02 that there remains little room
for improvement[
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Fig[ 04[ Sandwich!wall\ hollow cylinder^ d � distance between sheet centerlines\ t � sheet thickness\ R � mean cylinder
radius[

For small d:R\ the column buckling stress s0 is still well approximated by eqn "22#[ For long
tubes the local buckling stress of the sandwich cylinder may be written as "Anon[\ 0854#

s1 �
1gE

z0−n1

rg

R
"47#

where rg is the radius of gyration of the stress!carrying area of the shell and g is the knockdown
factor[ We follow the NASA suggestion "Anon[\ 0856# and use eqn "24# for g\ where now

f �
0

05"01#0:3X
R
rg

[ "48#

"Note that this reduces to the de_nition "25# for the solid hollow cylinder of Fig[ 2[# For the
sandwich cylinder

rg

R
�

d
1RX 0¦

0
2 0

t
d1

1

[ "59#

Now follow the procedures used for the sandwich!wall square tube[ Setting s0 � s1 � s\ provides
the connections
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The exact relations

P � 3psRt "51#

and

W � ð3prRt¦1prcR"d−t#ŁL "52#

give
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For the elastic design range\ we anticipate that t:d may be dropped in "50# and rewrite eqn "53#
as
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In the de_nition "24# of g\ f can be approximated by

f �
0

05"2#0:3zd:R
[ "55#

Asserting that the derivative of W:"rL2# with respect to d:R must vanish leads to an explicit
analytic formula for P:"EL1# in terms of the corresponding optimum d:R\ which may then be used
in eqn "54# to give the associated value of Wmin:"rL2#^ details are omitted[ These elastic results are
valid up to the critical value ðP:"EL1#ŁY � 9[0212×09−5 of the structural index\ for which
s:E � oY"gd:R#:z0−n1[ At this point\ for oY � 9[996 and n � 0:2\ the knockdown factor becomes
equal to gY � 9[5484\ with d:R � 9[9099[

Note that for higher values of P:"EL1#\ eqns "47#\ "48#\ with s1 � sY\ imply that g stays _xed at
the value gY[ Using s � sY in eqns "51# and "50# "with all terms now retained# to eliminate R:L
and t:d from "53#\ gives

Wmin
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in the range ðP:"EL1#ŁY ¾ P:"EL1# ¾ ðP:"EL1#ŁS\ with
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The squash value ðP:"EL1#Łs � 0[97×09−5\ corresponding to t:d � 0 and disappearance of the
sandwich core\ is the same as that found earlier for the monocoque cylinder[ The other optimum
dimension ratios in this range are
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EL11[ "58#

With the insertion of the mode!coupling l into the structural index\ the results for minimum weight
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Fig[ 05[ Minimum weights of sandwich!wall\ hollow circular cylinder and of other con_gurations^ oY � 9[996\ n � 0:2[

of the sandwich!wall circular tube are shown by the bottom curve in Fig[ 05\ which zooms onto
the design range for which sandwich tues provide lower weights than monocoque cylinders[ Such
low values of structural index correspond to long or lightly loaded columns\ but unless L is
unusually big\ the core and sheet thicknesses required to optimize the design may be impractically
small[ Example] say L � 03 ft\ E � 096 psi\ P � 49 kips and l � 9[8[ Then P:"lEL1# ¼ 9[19×09−5

and from eqns "57#\ "58#\ R ¼ 5[3ý\ t ¼ 9[900ý and the core thickness is "d−t# ¼ 9[942ý[ This last
dimension is less than the average cell size in currently available metal foams[ A similar observation
applies to the optimum dimensions of the sandwich!wall square tube[

2[ Strain hardening

The optimization calculations can also be done on the basis of a strain!hardening stressÐstrain
relation for the base material "Gerard\ 0845#[ This has the conceptual advantage of permitting a
uni_ed calculation of plastic buckling that replaces the separate analyses for elastic and plastic
behavior that were needed for ideal plasticity[ The procedure will now be exempli_ed for the case
of the hollow square tube[

The RambergÐOsgood equation

o

oY
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¦
2
6 0

s

sY1
n

"69#

connecting compressive stress s and compressive strain o will be used[ Here sY is a nominal yield
stress\ oY � sY:E and n × 0 is the strain!hardening exponent[ The plastic column buckling stress
s0 of the hollow square!tube column "Fig[ 2# is given by the Shanley "0835\ 0836# result

s0 �
p1Etan

5 0
b
L1

1

"60#
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for small t:b\ where the tangent!modulus Etan\ replacing E in eqn "0#\ depends on s0[ The plate
buckling stress will be written as

s1 �
p1Ep

2"0−n1
p# 0

t
b1

1

"61#

where Ep and np\ replacing E in eqn "14#\ are functions of s1[ The choices to be made here for Ep

and np are given by the modi_ed deformation!theory formulas1 "Stowell and Pride\ 0840#
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in terms of the secant modulus Esec[ For the RambergÐOsgood representation "69# we have
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"65#

as functions of the applied stress[
Now impose the condition s0 � s1 � s9\ where s9 is the naive optimization stress corresponding

to the prescribed load P:l[ Then the optimum dimension ratios are
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and
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Using P � 3bts9 and W � rPL:s9 then gives

1 A spirited debate raged 49 years ago about the {right| equations for plastic buckling of plates and shells and has been
renewed occasionally since then[ Su.ce it to say here that the deformation!theory results shown here have withstood
the test of time\ even if one prefers to regard them as semi!empirical[
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Fig[ 06[ Minimum weight of hollow square tube for strain!hardening "n � 02# and ideal plasticity "n � �#^ oY � 9[996\
n � 0:2[
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For prescribed values of oY and n\ eqns "62#Ð"79# provide Wmin:"rL2#\ as well as b:L and t:b\ as
functions of P:"EL1#\ parametrically via s9:sY[ "These results with strain hardening taken into
account were essentially given by Gerard "0845#\ except that he used hp � hs[#

With the mode!interaction factor l introduced into the denominator of the abscissa\ the mini!
mum!weight results are shown in Fig[ 06 for n � 02 and oY � 9[996\ together with the curve
of Fig[ 7 for n � �[ "Note that in the strain!hardening RambergÐOsgood formulation plastic
deformation occurs for s:sY ³ 0\ which is why the weights are higher for n � 02 than for n � �[#
The optimum dimension ratios are shown in Fig[ 07[ These may be compared with the results of
Fig[ 7 for n � �[ Note that with plastic buckling as the failure criterion in the presence of strain!
hardening\ the optimum dimensions are determinate at all values of the structural index[

Similar procedures can be used to account for strain hardening in the optimization of the other
con_gurations that have been studied via ideal plasticity[ Su.ce it to say that strain hardening is
not likely to change the qualitative conclusions reached concerning the relative weights of various
optimum designs[

3[ Panels

Wide panels sti}ened by uniformly spaced longitudinal stringers "Fig[ 08# are common com!
pression components in aircraft structures[ The minimum weight design of such panels received
much attention 49 years ago\ in a remarkable series of systematic compressive strength tests of
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Fig[ 07[ Optimum dimension ratios\ hollow square tube^ n � 02\ oY � 9[996\ n � 0:2[

Fig[ 08[ Sti}ened compression panel] Pi � load per unit width[

hundreds of panels by the National Advisory Committee for Aeronautics "NACA#\ e[g[\ Schuette
"0834#\ Schuette et al[ "0835#\ Hickman and Dow "0840\ 0842# and more[ In addition\ a few
theoretical papers were written by engineers at Lockheed "Zahorski\ 0833#\ Bristol Aeroplane
"Farrar\ 0838# and Vickers!Armstrong "Catchpole\ 0843#[ The panel is essentially a wide column
and if simple support is assumed\ the elastic Euler column buckling stress is

s0 �
p1

Ai

EIi

L1
"70#

where Ai is the average cross!sectional area per unit width and Ii is the centroidal moment of inertia
per unit width[ The stress s produced by a load per unit width Pi is s � Pi:Ai and it follows that
s0 and the corresponding Pi when column buckling occurs are related by

s0 �"p1Ev#0:2 0
Pi

L1
1:2

"71#

where v � Ii:A
2
i is the panel shape factor "Schuette\ 0834#[ This displays the fundamental panel
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Fig[ 19[ Z\ hat and Y sti}eners[

structural index Pi:L containing the prescribed design variables[ Maximizing s0 minimizes the
weight per unit length Wi � rPiL:s0[ Thus\ for a given material\ the optimum design problem
devolves upon a search for the highest admissible v\ at least in the elastic design range[

Figure 08 illustrate so!called {blade| sti}eners^ the NACA tests involved riveted Z\ hat and Y
stringers "Fig[ 19#\ the _rst two of which have been most commonly used in practice[ In all cases\
local buckling provides an upper bound to v and naive optimization demands the equality of local
and column buckling[ This has general implications concerning the dependence of minimum weight
on the structural index "Zahorski\ 0833#[ For any one of the sti}ener con_gurations shown in Figs
"08Ð19#\ the elastic local buckling stress s1 will obey the functional form

s1

E
� f1 0

t
b1

1

"72#

where b is the sti}ener spacing\ t is the skin thickness and the nondimensional coe.cient f1 depends
only on the remaining independent ratios of pertinent dimensions within the repeating unit of the
skin!sti}ener combination[ For these ratios _xed\ the shape factor v � Ii:A

2
i will generally be

proportional to "b:t#1 and so the column buckling stress in "71# satis_es
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1:2

0
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"73#

where f0 is another coe.cient dependent on dimension ratios[ Accordingly\ with the imposition of
the naive optimization condition s � s0 � s1\ elimination of t:b gives

s

E
�" f 2

0f1#0:3X
Pi

EL
[ "74#

A further search for the proportions that provide the optimum value a 0 ð" f 2
0f1#0:3Łmax would give

sopt

E
� aX

Pi

EL
"75#

and then the minimum weight per unit width Wi is rPiL:sopt[
The NACA tests\ in e}ect\ solved the problem of _nding sopt experimentally[ They actually went

much further\ exploring the plasticity range for the connection between a and Pi:L as well\ for two
aluminum alloys[ The tests also inherently took into account many practical variables such as the
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Table 0
Value of a\ eqn "75#

NACA Farrar

Z 0[91 9[84
Hat 9[88 9[85
Y 0[04 0[14

real details of riveted connections and rivet spacing and other actual as opposed to idealized cross!
sectional geometries[

The NACA experimental results for sopt in the elastic range were summarized by Gerard "0845#
as shown in Table 0\ which gives the value of a in eqn "75# that he extracted from the voluminous
NACA data for Z\ hat and Y sti}eners[ Farrar "0838#\ working independently\ analyzed the
optimization problem theoretically\ producing the results for a shown for comparison in Table 0[
The agreement is remarkable[ Later\ Catchpole "0843# analyzed the blade!sti}ened panel and
found a � 9[70[

To establish a simple baseline result for near!optimum skin!stringer panels that can easily be
extended to the plastic design range\ the special hat!sti}ened con_guration shown in Fig[ 10 is
considered[ The construction is idealized to be integral\ without attachment ~anges\ skin and
stringer thicknesses t are equal and the identical\ centerline stringer ~ange and web lengths b are
half the stringer pitch 1b[ The local plastic buckling stress s1 is then exactly the same as for a
square tube and so is given by eqn "61#\ with the plasticity de_nitions "62#Ð"65# applicable[ The
plastic column buckling stress s0 is given by eqn "71#\ with E replaced by the tangent modulus Et

and with v �"41:0764#"b:t#1\ which follows from Ii �"02:29#b1t and Ai � 4t:1[ Setting s9 � s0 � s1

and eliminating b:t\ as in the general derivation of eqn "74#\ gives the naive!optimum stress
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0
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"76#

where ht\ hp and np are functions of s9:sY[ This result\ in essence\ was found by Zahorski "0833#^
here the new nondimensional structural index Pi:"EL# has been introduced[ In the elastic range\
with n � 0:2 and ht � hp � 0\ eqn "76# provides the approximation a ¼ 0[99 in eqn "75#\ close to

Fig[ 10[ Special hat!sti}ened panel[
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Fig[ 11[ Stress in naive!optimum\ sti}ened panel "Fig[ 10#^ n � 10\ oY � 9[996\ n � 0:2[

the optimum result in the NACA tests[ Figure 11 shows the graph of eqn "76# for n � 10 and
oY � 9[996\ together with the elastic result[ The rough ranges of structural index indicated for
panels in various aircraft components are adapted from Farrar|s 0838 paper[ The naive!optimum
nondimensional weight is

0
Wi

rL11min

�
Pi

oYEL>
s9

sY

[ "77#

In terms of s9:sY\ t:b is given by eqn "67# and from eqn "70#\ with E replaced by Et\ we have

b
L

�
0
pX

"64:02#"s9:sY#oY

ht

[ "78#

Finally\ Pi may be replace by Pi:l in these results to account for mode interaction[ Curves showing
weight and dimension ratios vs Pi:"lEL#\ found parametrically via s9:sY\ are given in Figs 12 and
13 for n � 10 and oY � 9[996[ At least in the elastic range\ l should probably not be less than 9[8

Fig[ 12[ Weight of hat!sti}ened panel "Fig[ 10#^ n � 10\ oY � 9[996\ n � 0:2[
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Fig[ 13[ Optimum dimension ratios of hat!sti}ened panel "Fig[ 10#^ n � 10\ oY � 9[996\ n � 0:2[

"Koiter and Pignataro\ 0865#[ The result "77# for the minimum weight can be written more
explicitly as
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"89#

which shows that in the elastic range it varies like the square root of the structural index[
A symmetrical foam!core sandwich panel "Fig[ 14# is examined next[ The weight per unit width

is Wi � ð1rt¦rc"d−t#ŁL and using 1t � Pi:s gives
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Here s is the column buckling stress satisfying

s
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3
ht

oY 0
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"81#

for "t:d#1 ð 0[ "In the pertinent range of structural index\ it will not be necessary to account for
thicker skins[# Eliminating d:L from eqn "80# gives

Fig[ 14[ Sandwich panel^ d � distance between centerlines of face!sheets[
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and with the use of eqn "64# for ht this may be minimized with respect to s:sY\ with the result
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The optimum d:L\ the minimum weight and the corresponding value of the structural index are
now explicit in terms of s:sY via eqns "81#Ð"83# and then the optimum t:d is given by

t
d

�

Pi

EL
1oY"s:sY#"d:L#

[ "84#

Plots of the minimum weight are shown in Fig[ 15 for rc:r � 9[94 and 9[0\ together with the results
of Fig[ 12 for comparison[ Figure 16 shows the optimum dimension ratios for rc:r � 9[0[

The elastic solution for minimum sandwich weight per unit width is
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0
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which shows that as a function of the structural index the optimized sandwich must always start
out weighing more than the optimized sti}ened panel ðeqn "89#Ł[ Furthermore\ in the examples
shown\ plasticity prevents the sandwich weight from ever getting smaller than that of the skin!
stringer panel\ which it would inevitably do in an ideal elastic world[

In the elastic solution\ the optimum skin thickness is given by

Fig[ 15[ Minimum weights\ sandwiches vs sti}ened panel^ n � 10\ oY � 9[996\ n � 0:2[
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Fig[ 16[ Optimum dimension ratios of sandwich panel^ rc:r � 9[90\ n � 10\ oY � 9[996[
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and the corresponding ratio of core weight to skin weight is
Wc

Ws

� 1 00−
2rc

3r 1[ "87#

"This provides a _rst!order correction to the well!known condition Wc:Ws � 1 for minimizing the
weight of a sandwich with a very light core when its bending sti}ness is prescribed[#

Finally\ the idealized panel con_guration illustrated in Fig[ 17\ where the stringer pitch is _xed
at 1b\ will be optimized^ here both the skin and stringer walls are sandwiches[ Equating the column
and local buckling stresses gives the naive optimization condition

s �
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and the weight per unit width is

Fig[ 17[ Sandwich!wall skin and stringer^ t � face!sheet thicknesses\ b � centerline widths\ d � distance between face!
sheet centerlines[
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Wi � ð4rt¦"4rc:1#"d−t#ŁL[ "099#

These can be manipulated to produce the expression
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To establish minimum weight for a given value of the structural index\ the derivative of "090# with
respect to s:sY is set to equal to zero^ here\ numerical di}erentiation\ based on the de_nitions "63#Ð
"65# is convenient[ The resulting equation may readily be solved iteratively for PI:"EL# vs assumed
values of s:sY and then the relations "090# and "091#\ together with
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64
02
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and

t
d

�

Pi

EL
4oY"s:sY#"d:L#

"093#

provide the results shown by the bottom curve in Fig[ 18 for minimum weight and in Fig[ 29 for
optimum dimension ratios[ Using l � 9[8 here should be conservative[

Although the optimum sandwich!wall skin!stringer panel clearly provides the lowest weight in

Fig[ 18[ Optimum weights] sandwich panel\ hat!sti}ened panel\ sandwich skin and stringer panel^ n � 10\ oY � 9[996\
n � 0:2[
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Fig[ 29[ Optimum dimension ratios of sandwich!wall skin!stringer panel "Fig[ 17#^ rc:r � 9[90\ n � 10\ oY � 9[996\
n � 0:2[

the low range of the structural index\ the practicality of the required dimensions is questionable[
As in a sandwich!wall column\ the optimum core thickness may become of the order of the cell
size in a metal foam[

In the small range of structural index\ say Pi:"EL#×094 ³ 0:09\ where the design is essentially
elastic\

t:d �"rc:r#"1−rc:r#−0 "094#

and it follows that the ratio of core weight to sheet weight is

Wc:Ws � 0−rc:r[ "095#

But as the structural index increases\ t:d approaches unity and the optimum core thickness "d−t#
tends to zero[

4[ Concluding remarks

The present optimization studies were made in order to assess the potential utility of light metal
foams as weight!saving components of two kinds of compression structures] columns and ~at
compression panels[ For foam porosities around 89)\ the results are disappointing in some
respects[ On a weight:strength basis\ foam!core square and circular tubes appear to be generally
inferior to optimized\ hollow columns^ optimized ~at sandwich compression panels are heavier
than optimized skin!stringer panels[ In principle\ using sandwiches as the walls of hollow columns
can provide weight savings and lower weight in a sti}ened panel can be attained by substituting
sandwiches for the monolithic walls of the skin and stringers[ But in structures of conventional
scales\ such hypothetical designs tend to be impractical because of minimum!gage considerations
with respect to core and face!sheet thicknesses[

There are several compelling reasons\ however\ why metalÐfoam sandwich construction should
not be dismissed[ These may be described succinctly as] cost\ sti}ness and multiple use[ The _rst
is obvious^ economies of processing and fabrication could\ in some applications\ be more important
considerations than weight[ Sti}ness] no limitations on axial compliance were imposed in the
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present studies[ Imposition of a sti}ness requirement in addition to a speci_ed axial strength tends
to reduce the competition among various con_gurations[ "This explains\ at least partially\ the
results of the study by Cruz "0880#\ in which sti}ness requirements\ as well as limitations on axial
strain\ were indeed imposed and honeycomb!core sandwich panels turned out to be nearly as
structurally e.cient as skin!stringer panels[# With respect to multiple use\ metal foam core sand!
wiches have already found applications in sound!insulating panels and show promise as _re
retardants^ these bene_ts could dominate weight considerations[

It should also be mentioned that purely on a weight basis\ metalÐfoam sandwich construction
may be very e.cient in curved shells subjected to midsurface compression[ The isotropic bending
resistance in a sandwich having an isotropic core would appear to provide a structural advantage
over sti}ening in one direction when resistance to buckling is a design constraint[ A limited number
of numerical studies by Agarwal and Sobel "0861# have demonstrated weight advantages of
optimized axially compressed sandwich cylinders over optimum designs of skin!stringer cylinders[
Systematic\ comparative optimization studies of curved shells are clearly desirable[

A few remarks follow about some of the idealizations made in the present sandwich analyses[
Ignoring the in!plane core sti}ness makes the sandwich appear a bit worse than it really is\ but
this conservative e}ect\ for high!porosity foams\ is small[ On the other hand\ the in~uence of
transverse shear compliance in lower buckling resistance was also neglected and this could be
more serious\ especially for porosities that exceed 9[84[ Core plasticity could also lower buckling
resistance considerably[ These may be good reasons to seek improvements in the sti}ness and yield
properties of metal foams\ should their use as sandwich cores be contemplated[ Finally\ on the
positive side\ elementary estimates indicate that for porosities below 9[84\ face!sheet wrinkling into
metalÐfoam cores does not appear to be an issue\ even with cores having relatively poor sti}ness
properties\ as long as they remain elastic[

A _nal observation] the imperfection!sensitivity of optimized thin!walled columns and sti}ened
panels tends to make failures catastrophic when they occur\ whereas foam!core columns and
sandwich panels can be expected to undergo more graceful collapse[ This qualitative consideration
might nudge a prudent designer to accept the weight penalties associated with more robust
con_gurations that exploit metal foams[
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